SEA-Foam & SEA-Cyl

Overview

Designing Acoustic Performance

By analyzing and predicting acoustic performances (transmission and absorption) of complex multi-layered wall partitions in vehicles and buildings.

SEA-Foam is an optional module of SEA+ software based on Statistical Energy Analysis (SEA).

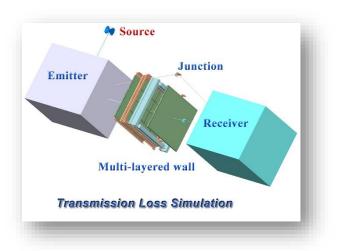
SEA-Foam module multiplies the capability of SEA+ by creation of acoustic trims connected to structural and/or acoustic subsystems for predicting interior or radiated noise.

SEA-Foam Library

A trim is a coating made of several kinds of layers.

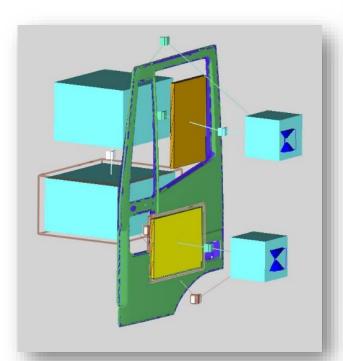
SEA-Foam layer types are listed as follows:

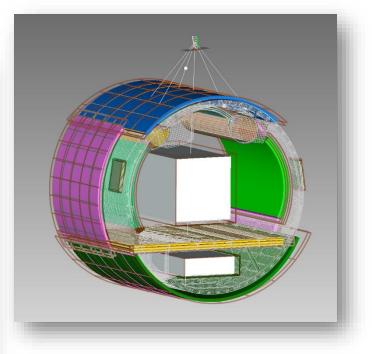
- Foam layer (porous biphasic foam, limped foam, limped foam with shear)
- Fiber layer (with or without structural shear)
- Thick elastic plate layer (flat plate geometry only)
- Fluid layer (gas or heavy fluid)
- Thin elastic shell (flat plate, singlycurved or doubly-curved shells)
- Septum layer
- Perforated sheet layer (equivalent porous biphasic foam, equivalent dissipative fluid)


SEA-Foam Advanced Features

The prediction of trim acoustic transmission is performed using the Transfer Matrix Method (**TMM**).

Unlimited number of layers may be assembled.


Among advanced features available in SEA-Foam:


- Curvature corrections improve transmission and insertion loss prediction of curved geometry
- Properties of elastic panels covered by trims are automatically modified by added mass and added damping
- Trims properties can be computed at different temperatures
 - Porous materials can be compressed
- Patch of trims may also be applied to a panel
- Prediction of acoustic transmission and absorption properties for diffuse field or grazing incidence
- Spatial windowing for finite-sized corrections

Some Applications

- Analysis of Aircraft in-flight interior noise due to turbulent boundary layer noise or incident engine sources
- Car and truck interior noise design in multi-source configuration
- Environmental noise in factories
- Insulation analysis in buildings

SEA-Foam & SEA-Cyl

Specifications

SEA-Foam Library

- Porous material: Biot-Allard theory
- Limped foam
- Fiber
- Fiber with Shear
- Air Gap
- Thin panel with construction inherited for SEA+: homogeneous, sandwich, laminate with and without curvature, with and without ribs
- Thick homogeneous panel
- Perforated plate
- Septum

Spatial Windowing

- Use: correction for finite-size of the specimen
- 2D or 1D correction
- No need to limit the angle of integration to 78.5°: give correct prediction of diffuse field mass law

Interaction of Trim with

Supporting Panel

- Added damping
- Added mass
- Work for heavy fluid

Power Flow Calculation

- Explicit separation of resonant (modal) transmission and non-resonant (mass) transmission
- Use: diagnosis of whether damping or mass is effective in a frequency band

Control of Transmission under

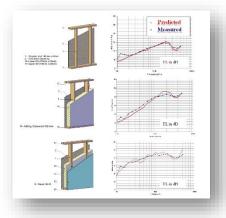
Incidence

- Diffuse field transmission loss
- Customizable grazing incidence
- Acoustic transmission in a solid angle

Frequency Bandwidth

Work in 1/Nth octave band from octave down to 1/24th octave and in constant bandwidth

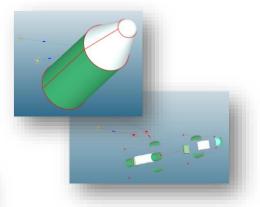
Outputs


- Transmission loss (TL)
- Insertion Loss (IL)
 - Absorption coefficient

10 impasse Borde Basse ZA La Violette 31240 L'Union France info@interac.fr www.interac.fr

Applying Trim to SEA+ Subsystems

- All structural analytical and Virtual SEA (VSEA) subsystems of any type can be trimmed
- Trims can be applied to cavity for absorption prediction
- Trims can be inserted in acoustic-toacoustic junctions
- Several trims may be applied to a subsystem or a junction
- Trims may be individually enabled or disabled for sensitivity analysis


SEA-Cyl

SEA-Cyl is an optional module of SEA-Foam. SEA-Cyl (developed by CSTB) is a very efficient spectral approach of cylindrical multilayered systems improving accuracy of acoustic transfers in SEA or VSEA models in SEA+ software. It leads to refined physical behavior with quick and robust simulation of any trimmed curved element.

lame Ne	w Cavity;1					
Properties	Geometry	Trims	Icon Settings			
Face	Area (m²)		Trim	% Cov.	Use SEA-Cyl	Radius
Face 0	0.35		Test	100		(
Face 1			2-layer Treatment	100		(
Face 2	1		car door	100		(
Face 3			None	100		(
Face 4	1		None	100		
Face 5	1		None	100		
inverse o	truction side	ayers 🗹	Cavity Volume	Trims m - Flex - Thick	Panel,	are :
inverse o	rder of trim I Porous Mate	ayers 🔽 rial (0.00	Cavity Volume	Trims m - Flex	at Compatible a Panel, c Panel, us,	are :
inverse of	of trim l	ayers rial (0.00 m e (0.001 i	Cavity Volume	Trims m - Flex - Thick - Poro	at Compatible a Panel, c Panel, us,	are :
Inverse of (*)F Pol	orous Mate	rial (0.00 m e (0.001 i daterial	Cavity Volume	Trims m - Flex - Thick - Poro	at Compatible a Panel, c Panel, us,	are :
Inverse of Part Pert Fib Gla Bra	rder of trim I Porous Mate Aurethane for forated Plati V Perforated I er (0.001 m) ss Wool Light Thin Panel (0 ss	ayers rial (0.00 m e (0.001 i /aterial	Cavity Volume	Trims m - Flex - Thick - Poro	at Compatible a Panel, c Panel, us,	are :
inverse o Per Nes Gia (*)1 Bra (*)1 Aiz	Porous Mate Amethane foo forated Plat <i>a Perforated I</i> <i>ar (0.001 m)</i> <i>as Wool Light</i> Thin Panel (0 <i>as</i> Thin Panel (0 <i>minum</i>	ayers rial (0.00 m e (0.001 m //aterial 1.001 m)	Cavity Volume	Trims m - Flex - Thick - Poro	at Compatible a Panel, c Panel, us,	sre :
inverse o Per Nes Gia (*)1 Bra (*)1 Aiz	der of trim I orous Mate <i>arethane for</i> forated Plativ <i>Perforated I</i> er (0.001 m) ss Wool Light Thin Panel (0 ss Thin Panel (0 minum Tuid Gap (0.	ayers rial (0.00 m e (0.001 m //aterial 1.001 m)	Cavity Volume	Trims m - Flex - Thick - Poro	at Compatible a Panel, c Panel, us,	sre :

SEA+ / SEA-Cyl

Application to Sound Reduction

- Predicting performance of sound insulation packages, applied to curved structures in mid & high frequency ranges, is improved thanks to SEA-Cyl
- SEA-Cyl performs all TMM* computations expressing acoustic trim layers & master structure in cylindrical coordinates
- Within one click, it is possible to switch from TMM calculation in planar configuration (classical case) to full cylindrical configuration
- Curvature is known for changing radiation properties of structures but influences also the transmission properties of trims and their effect on master structure, taken into account in SEA+

Example: a single layer of porous material may considerably change the transmission behavior of an aerospace structure whether its dynamic behavior is computed in planar or curved configuration

(*) TMM (Transfer Matrix Method): classical method to compute transmission through various acoustic layers (the trim, generally modelled in planar configuration) applied to a supporting structure modelled in the SEA framework with the appropriate geometry

Copyright InterAC